Prevx

» ADVANCED MALWARE RESEARCH TEAM

@

ZeroAccess — an advanced kernel mode rootkit

(rev. 1.1)

Marco Giuliani
Head of Prevx Advanced Malware Research Team

PREFACE

When we write about ZeroAccess rootkit, it is essential to go back in 2009 and to remind when this rootkit
had been discovered in the wild. It was the time of MBR rootkit and TDL2 rootkit — the second major
release of the most advanced kernel mode rootkit currently in the wild — when security researchers came
across a new, previously unknown, rootkit able to kill most of security software as soon as they tried to
scan specified folders in the system. ZeroAccess was creating a new kernel device object called _ max++>,
this is the reason why the rootkit has quickly become known in the security field as the max++ rootkit, also
known as ZeroAccess due to a string found in the kernel driver code, presumably pointing to the original
project folder called ZeroAccess (f:\VC5\release\ZeroAccess.pdb).

This rootkit was storing its code in two alternate data streams, win32k.sys:1 and win32k.sys:2. To avoid
being detected, it was killing every security software that attempted to scan for alternate data streams. It
created in the system folder a number of fake junctions (note: an NTFS junction point is a feature of the
NTFS file system that allows a folder to be linked to another local folder , becoming an alias for such target
folder) pointing to the fake rootkit device written above. When security software tried to scan such
specified folders for Alternate Data Streams presence (FileStreaminformation class), the rootkit’s self-
defense queued a work item in the security process able to immediately kill it. It became a non-trivial job
scanning the system without being killed.

Since then, ZeroAccess rootkit evolved, changing the way it infects the system, becoming yet more
advanced and dangerous. In this paper we are going to analyze this threat and how it evolved to its current
release.

@ » ADVANCED MALWARE RESEARCH TEAM

DROPPER ANALYSIS

This rootkit is installed by a dropper which is usually downloaded in the system by crack or warez websites, or still by exploit packs.
These are the usual infection vehicles. The dropper implements a number of anti-debugging techniques along with a classic
spaghetti code able to slow down the job of code analysis. After the first stage unpacking, the code tries to acquire following
privileges: SeDebugPrivilege, SeTakeOwnershipPrivilege, SeRestorePrivilege, SeSystemtimePrivilege, SeSecurityPrivilege. Then, it
starts the infection payload.

Before analyzing the infection more in detail, it’s necessary to briefly describe how ZeroAccess is infecting the system. The dropper
chooses randomly a driver in the systemroot\system32\drivers folder and it overwrites the original code — saving it for backup
purposes. Then, after loaded, the rootkit driver sets up a new disk device object, which will be used as a gate for the hidden volume
drive created by the rootkit itself to store its files and data.

This is an effective technique, though similar to the TDL3 rootkit infection. While ZeroAccess sets up a new encrypted hidden
volume in the system’s filesystem, TDL3 creates a brand new encrypted filesystem in the last sectors of the hard drive, outside the
system’s filesystem. Both store their files inside these new encrypted volumes, making them totally inaccessible by the operating
system. Both rootkits infect a random driver, though while ZeroAccess totally overwrites the driver’s body, TDL3 rootkit hijacks the
driver’s entrypoint, overwriting less than 1KB in the driver’s resource section. Other differences are in the disk’s I/0 filtering engine,
much different and less powerful in ZeroAccess than in TDL3 rootkit.

Let’s analyze more in depth how the driver’s infection routine works in ZeroAccess and how the rootkit chooses the right driver to
infect.

v" The rootkit calculates a specific value that will be used as a check for the driver’s image size. In the analyzed sample the
value is 0x7410 (29712 bytes), which is the size of the rootkit kernel driver. Obviously the target driver should be bigger
than that;

v" The rootkit starts enumerating all the system drivers by calling ZwQuerySystemInformation with
SystemModulelnformation class;

v" The target driver must be located between classpnp.sys driver and win32k.sys, every other driver is discarded;

v" All the drivers between classpnp.sys and win32k.sys that have an image size smaller than 0x7410 are discarded;

v" All the drivers bigger than such value are subsequently analyzed. Following parameters are checked:
o Driver file name must end with a “.sys” extension;
o Startvalue in the driver’s registry key must be greater than zero (driver should not start at system boot);
o Driver’s PE Export Table size must be zero (the driver should not export anything);

v' If the above listed checks are positive, the driver is marked as “potential good target” by setting the value 1 to its
SYSTEM_MODULE->Id structure;

v This analysis loops until all the drivers are analyzed and marked

This 1% loop is used by the rootkit to find all potential target drivers in the system machine. Then, after the loop is finished, the
rootkit starts a 2" loop, which is the one that actually chooses which driver will be infected.

v" The rootkit calculates a random value by calling GetTickCount and then RtIRandom Win32 APIs;
v" A counter is initialized with the value got from the operation (RandomValue % NumberOfPotentialTargetsFound);

v" The rootkit starts again a loop to analyze all system drivers, decreasing the counter each time a potential target driver is
found (SYSTEM_MODULE->Id = 1);

When the counter is equal to zero, the rootkit has found the target driver that will be infected. The rootkit then creates a new
section, called \.<name of the driver that will be infected> (e.g. \.NdProxy), where it temporarily stores a copy of the clean driver

@ % ADVANCED MALWARE RESEARCH TEAM

body. The rootkit then creates a new section, called \.<name of the driver that will be infected> (e.g. \.NdProxy), where it
temporarily stores a copy of the clean driver body. Then the rootkit creates a new service registry key under
HKLM\SYSTEM\CurrentControlSet\Services\ with the value .<name of the driver that will be infected> (e.g. .NdProxy). Inside this
registry key, the ImagePath value is set to *. This is an obfuscation trick to avoid security software from intercepting the file which
is going to be loaded. By passing the value *, security software will be fooled because it apparently doesn’t point to any real file.
Actually the rootkit’s dropper sets a new symbolic link by calling ZwCreateSymbolicLinkObject API, pointing * to the real file.

The dropper infects the target driver by fully overwriting the code with its own kernel mode driver and then loads it by calling
ZwLoadDriver. Before overwriting the driver’s body, the dropper makes sure to suspend the System File Checker (SFC) thread by
suspending all threads related to the sfc_os.dll module. These threads are resumed after the infection routine is finished.

Before executing the real infection payload, the dropper checks if it is running in a WoW64 emulated environment. If so, the
process immediately terminates. The rootkit currently doesn’t infect x64 based Windows operating systems. Moreover the dropper
checks if the infection is already running inside the system by making a specific call to ZwOpenFile to try opening the rootkit device.
If the system is already infected, the rootkit device will give back the NTSTATUS error STATUS_VALIDATE_CONTINUE.

After the rootkit driver has been loaded, the rootkit device \\?\ACPI#PNP0303#2&dala3ff&0 (in this sample, though it may change
from release to release) can be accessed by user mode and the dropper is able to format the new volume using the NTFS file
system. To do so, it loads the fmifs.dll module — the Format Manager for Installable File Systems module - and imports the
FormatEx() API.

Format_Uirtual_Drive proc near ; CODE XREF: Infection_Payload+3968}p
push esi
push offset LibFileName ; "fmifs"
call ds:LoadLibrary¥

mov esi, eax
test esi, esi
jz short loc_462832
push offset ProcName ; "FormatEx™
push esi ; hModule
call ds:GetProcAddress
test eax, eax
jz short loc_46202B
push offset sub_481FES8
push 8
push 1
push offset unk_46A3A0
push offset aNtfs s *NTES®
push 8Bh
push offset a?AcpiPnpB3632D ; "“\\\\Z\\ACPIH#PNPO303#2&data3fra&n”
call eax
loc_48202B: ; CODE XREF: Format_Uirtual_Drive+28Tj
push esi ; hLibModule

call ds:FreeLibrary

The new hidden volume is now ready to store the clean copy of the original overwritten driver. The dropper doesn’t use the real file
name though, it generates a random file name, based on the following steps:

v' The rootkit queries the following registry key: HKLM\SYSTEM\CurrentControlSet\Control\agp by calling ZwQueryKey with
KeyBasicInformation parameter;

v" The rootkit then queries the _KEY_BASIC_INFORMATION->LastWriteTime parameter;

v It generates two specific seed values: the first by doing a XOR between the LowPart and the HighPart of the
LastWriteTime parameter (LastWriteTime.LowPart » LastWriteTime.HighPart); the second is by adding to the new
generated seed the original LowPart value, then increasing it by 1;

v' It uses a starting string from where it gets the “random” characters that will compose the new file name. The string is:
eaoimnqazwsxedcrfvtgbyhnujmikolp;

v" The file name that needs to be composed is 8 characters long, so it starts a loop by doing following steps:

@ % ADVANCED MALWARE RESEARCH TEAM

o Seed value is and’d with Ox1F (length of the starting string), the returning value is the index of the character in

the starting string that will be used in the new file name;

o Seed value is right shifted by 5 using a 64 bit right shift function exported by ntdll.dll (_allshr());

The loop continues until the eight-characters string is composed — starting from the end till the beginning of it. Then the file is
stored in the following path:

\PP\ACPI#PNP0303#2&dala3ff&0\L\Snifer67, where Snifer67 is replaced with the just generated name.

setup_seed:
nov
nov
xor
push
lea
pop

generate_file_name:
mov
mov
and
mousx
mov
mov
call
mov
dec
test
jnz

; CODE XREF: generate_name_clean_driver+281j
eax, [ebp+LowPart] ; LastWriteTime.Lowpart
edx, [ebp+HighPart] ; LastWriteTime.HighPart

edx, eax ; edx contains (LowPart " HighPart)
7

eax, [eax+edx+1] ; eax contains (edx + LowPart + 1)
esi

; CODE XREF: generate_name_clean_driver+77}j
edi, [ebp+arg_0]
ecx, eax ; eax is moved to ecx for math calcs
ecx, 1Fh ; ecx contains (ecx & Ox1F)

cx, ds:Start_String[ecx] ; ecx is now the index used to choose letter from "eaoimngazusxedcrfutgbyhnujmikolp"

[edi+esix2], cx ; the choosed char is stored in the new string, starting from the end

cl, 5 ; 5 is the number of times the 64 bit shift should be executed
_allshr ; 64 bit right shift is executed

ecx, esi

esi

ecx, ecx

short generate_file_name

Asm code of the name generation routine

Which can be roughly translated to the following C code:

char* StartingString = "eaoimngazwsxedcrfvtgbyhnujmikolp™;
char FileName[9];
DWORD index = 7;

RegOpenKeyA(HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\agp",®Key);
NtQueryKey(regKey,KeyBasicInformation,&KeyInfo,sizeof(KEY_BASIC_INFORMATION),&result);

seed2 = (KeyInfo.lastWriteTime.HighPart ~ KeyInfo.LastWriteTime.LowPart);
seed = (seed2 + KeyInfo.LastWriteTime.LowPart + 1);

while (index >= @)

{

FileName[index] = StartingString[(seed & @x1F)];
_allshr(&seed,&seed2,5);

if (index == @)
break;

index--;

Asm code roughly translated to C code

When the file name is generated, the new file is created inside the rootkit device and a copy of the clean driver is stored there.

@ % ADVANCED MALWARE RESEARCH TEAM

string

KERNEL MODE ROOTKIT INFECTION

In this paragraph we are going to analyze more in depth the job of the kernel mode driver dropped by the ZeroAccess rootkit.

As said in the previous paragraph, the rootkit sets up a new device object named ACPI#PNP0303#2&dala3ff&0, which is the gate
to access to the rootkit hidden device. Then, it intercepts Windows's disk 1/0 by hijacking the disk.sys connection to the lower port
device. If an attempt to read or write the infected driver is intercepted, the rootkit fakes the file content by showing the original
clean copy of the driver.

At driver’s startup, the rootkit checks if it’s the first time it runs on the system by checking the registry startup key from where it
has been executed. If it comes from the .<drivername> (e.g. .NdProxy) service registry key, then it’s the first time and the rootkit
deletes that key — it isn’t anymore needed.

Then the rootkit reads the path to the infected driver and calculates the hash of the driver path and file name by calling the
RtIHashUnicodeString function. This hash will be used by the rootkit to check whether someone is trying to get access to the
infected driver on the disk. The infected copy of the driver is then stored in memory and pointed by a specific MDL.

The rootkit is now ready to sets up its own code, so it makes a call to the loCreateDriver() native API and sets its own driver object,
hiding it from the DriverSection and pointing all its dispatch functions to a specific rootkit dispatch routine. To hide the new
generated driver object, the rootkit steals the original \driver\disk driver object, making a one-to-one copy of the clean disk.sys’s
driver object to the fake one

lkd> dt _DRIVER_OBJECT 0x8201£590
nt!|_DRIVER_OBJECT

+0=000 Type 4

+0=002 Size . 168

+0x004 DeviceObject . 0=x81£fd5040 _DEVICE_OBJECT

+0=x008 Flags © 0=12

+0x00c DriverStart : 0=xf86cb000

+0x010 DriverSize : 0=8e00

+0x014 DriverSection : 0x82ledbcl

+0x018 DriverExtension : 0x8201£f638 _DRIVER_EXTENSION

+0=x01lc DriverName : _UNICODE_STRING "“Driver:Disk"

+0x024 HardwareDatabase : 0x806629d8 _UNICODE_STRING "“REGISTRYNMACHINENHARDWARENDESCRIPTIONNSYSTEM"
+0=x028 FastIoDispatch © (null)

+0x02c DriverInit . O=xf86d28ab long +fffffffff86d28ab
+0=x030 DriverStartlo : (null)

+0x034 DriverUnload : {null)

+0=x038 MajorFunction : [28] O=f4b79134 long +fffffffff4b79134

lkd> dt _DRIVER_OBJECT 821eb320
nt!_DRIVER_OBJECT

+0=000 Type 4

+0=002 Size : 168

+0=x004 DeviceObject : 0x821a89f0 _DEVICE OBJECT

+0=008 Flags c 0=12

+0x00c DriverStart : O=xf86chbi00

+0x010 DriverSize : 0=8e00

+0x014 DriverSection . 0x821edbcl

+0=x018 DriverExtension : 0x821eb3cf _DRIVER_EXTENSION

+0x01c DriverName : _UNICODE_STRING "“Driwver\Disk"

+0x024 HardwareDatabase : 0x8066e9d8 _UNICODE_STRING "“REGISTRY“MACHINE“HARDWARENDESCRIPTIONNSYSTEM®
+0=x028 FastIoDispatch : {null)

+0x02c DriverlInit : D=xf86d28ab long +fffffffff86d28ab
+0=x030 DriverStartlo : {null)

+02034 DriverUnload . O=xfB6e253a void +fffffffff86e253a
+0x038 MajorFunction : [28] O0=xf86elc30 long +fffffffff86elc3l

Fake and original disk driver objects

In the above image we can see both fake and original disk.sys’s driver objects. The first one is the fake copy built by the rootkit, the
lower one is the original disk.sys copy. They are identical, except for the dispatch functions and the Device Object, which the
rootkit’s driver object points to its own objects.

The rootkit driver object sets up two different device objects, the first one is the device object used to intercept the disk.sys’s I/0
while the second one is the one we talked about at the beginning of the current paragraph.

To intercept disk.sys’s I/O routine, the rootkit hijacks the \driver\disk’s DRO device object by alterating its Device Extension
structure. The DRO_Device_Object->DevExtension->LowerDeviceObject pointer is modified to point to the rootkit device. The
rootkit then intercepts the IRP after it has been processed by disk.sys and before it can arrive to the port device driver (e.g.
atapi.sys), analyzing it and filtering it if needed.

@ % ADVANCED MALWARE RESEARCH TEAM

The rootkit analyzes whether the IRP is sent to its fake device ACPI#PNP0303#2&dala3ff&0, if so then it calls its own dispatch
routine to handle the request. Being a fake hidden volume, it can handle all the needed IOCTL like IOCTL_DISK_CHECK_VERIFY,
IOCTL_DISK_GET_DRIVE_GEOMETRY, IOCTL_DISK_IS_WRITABLE, IOCTL_STORAGE_CHECK_VERIFY,
IOCTL_STORAGE_GET_DEVICE_NUMBER, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, IOCTL_DISK_GET_PARTITION_INFO_EX. The hidden
volume is encrypted and the rootkit read/write routine is able to encode and decode the data on the fly. The fake volume is stored
inside a file located to systemroot\system32\config\<random file name>, where the random file name is the same name generated
by the dropper and used to store the clean copy of the infected driver. This file is always encrypted on the hard drive. The
encryption algorithm used by the rootkit is RC4 with a 128 bit key, which is the following:
OXFF,0x7C,0xF1,0x64,0x12,0xE2,0x2D,0x4D,0xB1,0xCF,0x0F,0x5D,0x6F,0xE5,0xA0,0x49. The RC4 encryption/decryption is done
sector by sector.

crypt_sector:

push offset RC4_key ; RC4 Key

lea esi, [ebp+Sbox] ; RC4 S-Box base address
call Generate_RC4 Table ; Generate RC4 S-Box
push SectorSize

b{ilg eax, eax

push edi

call CryptBuffer ; Encrypt/Decrypt sector
mov eax, SectorSize

add edi, eax

sub ebx, eax

jnz short crypt sector ;

Rootkit driver 1/0 encryption/decryption

%Y \0UGIEZ:}$-‘10COP'U ~C?HXE_4K¥E. ﬁelO"llb«hx(Uo" ol It10F<ﬂ-1 ‘EKIJ+ i=pxx”

JVo. £gh §++’U -{1.~Sza»Uat 81| ILD)eyI‘EDaaI aaNnVuE?S,.ﬁ[lEanl36 EpIUE9I
aU%QUylurebrau F:241- [hle-ﬂ. e nI}E(ANA . lUusﬂl zA-+M4B3IN" .Aedy2.n2;1E &
{nyﬁl[K"@xF— cTan ¥°eKc,].607@8- AC! e=AdDN= aelKany 2AP%MeLp 1l’lla—D1F:a.l
A . LiesABLIm V= yuﬂ~°lf&kl&aEWEh\tM0[}7bp|llI Oeuxd’ .miNmi:Lad1g:’ 3a6ln=’,,]<'
Uz(}ElI(,t”M§CSHRD°U. - ENE=3-m0" [}ykl§-Sl—uJ--M-bHI;X'-oay} 'lBlpa [BRI} 2-JR%
Bﬁ\lSL)—»aUZu'El‘ 23E+ aK+R}1Iw H+pE. a-Nemn |2 we.<isu=8¢ VZlITI1¥&~ 4q2§uE|
7 4%0;01"U3b?H4xB_UK¥E. EEIURUID~11XN|0" 7 INS6Fq21s ‘EKIJ+§1_J>CUdI2,, -qg4.CKEE@
]+{yﬂﬂluthoth0]n*lKla el?¥0lemnllnn)”sl€2u1—pP¥1lu=p qa§lT§]Iau I€l°e.—y

-0 .TOO=Mak 3R \TFS g) e in B j? - © _XDT
2Y;110e@[18 yoryn G3AmDY% |G, nolae- . -BA30E—z 43S h .hj-ER-$ “oivs|tjaiiroqearaqiica?
0.8 .0.%2 152 +ARIAI-AFS-EF:SFE A A»2UB-S 11k GU20.6A. 0 b= AF .—Fj+ £ F3— oz .f]

FP-SFh+ . €>q B2 &3je>q zMa "BE;S . loIHFX[oFXFx g-F30F3-71 £+ TpANEFEDFA
eA-—ﬂ-» Il]l-r$ meAE—. 1 .71":}I mA| InFy—+ 7 i}loyo.Fan g.e. {.et Gép”.M5~<
t. e I¢eon..Errore lettura da disco ..NTLDR mancante ..NTLDR compresso ..
Premere CTRL+ALT+CANC per riavviare.. .. B.BA U2 NTLDR-
$§138 a o é
o NENBAS- (N

Z

e

é
E a

Bale pFo-—7 FO9.. FIFENSFIAR €0 5.5 O0F,. £0

v 43 B 09/04/2011 21:38:25 09/04/2011
o | B 152 B 09/04/2011 21:38:25 09/04/2011
(Root directory) 41 KB 09/04/2011 21:38:25 09/04/2011
__1SBxdend 344 B 09/04/2011 21:38:25 09/04/2011
[800000c0.sys 445 KB 08/08/2021 13:57:08 09/04/2011
[80000002 sys 10,0 KB 29/05/2031 06:48:24 09/04/2011
(] 80000001 sys 21,5KB 14/06/2031 10:52:17 09/04/2011
u
(] 80000000 sys 21.5KB 22/06/2031 18:19:57 09/04/2011
[000000c0.sym 1,0 KB 08/08/2021 13:57:08 09/04/2011
|_] 00000011.sym 38 B 08/08/2021 13:57:08 09/04/2011
[00000002.5ym 6.8 KB 29/05/2031 06:48:24 08/04/2011
|_] 00000001.sym 43,0 KB 29/05/2031 10:11:24 09/04/2011

Rootkit file system decrypted

If the IRP is not directed to the rootkit device, the dispatch routine analyzes the packet, looking for I/O requests to the infected
driver file on the disk. The rootkit filters the IRP_MJ_INTERNAL_DEVICE_CONTROL major function, looking for SCSI request block
structures. If the SRB->Function is SRB_FUNCTION_EXECUTE_SCSI, the filtering routine proceeds. The rootkit checks if a FileObject
structure is filled in the incoming IRP request and, if so, calculates the hash of the file path located at the FileObject->FileName. The
hash is calculated by calling the RtIHashUnicodeString and the result is checked against the hash of the infected driver’s path
calculated by the rootkit at the rootkit driver’s startup. If the two hashes match, then the IRP request is faked by the rootkit.

@

Prevx

% ADVANCED MALWARE RESEARCH TEAM

If the SCSI_REQUEST_BLOCK packet operation is SCSIOP_READ, the read request is forwarded to the lower port device and the
result is faked by the rootkit’s CompletionRoutine; if the operation is SCSIOP_WRITE, the buffer is overwritten by the rootkit with
the infected copy of the driver that was previously pointed to by a specific MDL.

FS driver

Code flow after ZeroAccess infection

The rootkit queues a work item able to communicate with a list of C&C servers. It works at the TDI network layer, bypassing
firewalls and security software that don’t monitor network activities at this network level. The rootkit sends an encrypted request
to all the servers in the list, the packet is always sent to the remote port TCP 13620. The rootkit allows the attacker to drop in the
system further infections, by downloading and storing the relative files inside the hidden rootkit volume, so that they become
invisible to security software. These dropped files are in the form of kernel mode driver. This is because the main rootkit driver is
able to load them from the kernel by issuing a direct call to the loCreateDriver() native API. These drivers will be invisible to most of
security software which don’t implement advanced anti rootkit features.

The rootkit presence in the system could be spotted by looking at suspicious system shutdown notification routines pointing to an

unknown memory region. The rootkit sets up its own shutdown notification routine by calling the loRegisterShutdownNotification()
native API.

g % ADVANCED MALWARE RESEARCH TEAM

UPDATE (July, 2011)

ZeroAccess rootkit has been updated and several things changed since this first write-up.

The initial dropper, after executed, run a new instance of explorer.exe process and injects inside it the payload code. This behavior

allows the dropper to evade from Windows 7’s default UAC setting. Microsoft implemented a customizable version of the User
Account Control in Windows 7. In its default configuration, the UAC automatically allows white listed system processes to acquire

administrator rights without user interaction. This design allowed Microsoft to reduce the noise caused by the User Account

Control, though opening a way for malicious code to reach the administrator rights in an easier way. Explorer.exe is one of the
system white listed processes, so injecting malicious code inside the explorer process will allow the dropper to automatically get

administrator rights without any user interaction.

Decrypting the dropper code will show the internal project name, which indeed confirms the target:

w C.UfLlOYDSLENMILNEADI LLIEILNE DJ.ubLllLKLUUNIL r.uv
ltLangID ' ExitProcess U'Sleep " BindIoCompletio
B DeleteTimerQueueTimer q CreateTimerQueueTimer
MDSUpdate N.MDSFinal ADUAPI32.d11 B WSASocketW

SASend; m WS2_32.d11 ii‘_a
e p:\vc5\release_uac.pdb

cngazusxedcrfutgeabyhnujmikoijlp t
B @ 1 XEB @ 1 ii=B
1 o¥B @ 33. . .
ONoC 1096!1AY.

(iize3ix> 2n si8Eéd s.3AR[SH>;A°+R0 IAstu
E€.“HA3D-2, = } s.cii|s—Nelu,ARNRA® UR:+355"EN,
A+1$(m]$.aR

ZeroAccess code injected inside explorer

The dropper now uses a domain generation algorithm to contact the command and control server. The DGA is able to generate a
new domain each day. The domain generation routine is based on the current year, month and day and it works a follows:

v
v

AR NEE NN

The dropper gets the current date by calling the API function GetSystemTimeAsFileTime;

The dropper converts the resulted value to a TIME_FIEDS structure by calling the API function RtITimeToTimeFields;
The dropper calculates the CRC32 checksum value of the first 6 bytes of the TIME_FIELDS structure, which means
calculating the CRC32 of the Year, Month, Day fields. The checksum is calculated by calling the API function
RtIComputeCrc32 and the initial CRC value is set to 0. We will call this checksum as crcl;

The dropper calculates another CRC32 checksum like the step before, though this time initializing the CRC value to
0x33333333. This is being called crc2;

The dropper makes a shift logical left double (shld instruction) by 8, let’s call the result val2;

The dropper left shift the first crcl by 8;

The dropper now xor crc2 ” crcl, let’s call the result value as vall;

While (vall | val2) is not zero, the dropper use the (vall & 0x1F) result as index for the string:
“cngazwsxedcrfvtgeabyhnujmikoijlp”, then it makes a full right shift by 5, calling _allshr(vall,val2,5). The routine loops
until the “while” condition is met;

The dropper appends to the string just composed the .cn top-level domain

The reversed algorithm is exposed in the following image:

@

Prevx

% ADVANCED MALWARE RESEARCH TEAM

build_domain:

call ds:GetSystemTimeAsFileTime

lea eax, [ebp+var_1C]

push eax

lea eax, [ebp+SystemTimeAsFileTime]

push eax

call ds:RtlTimeToTimeFields

mov edi, ds:RtlComputeCrc32

push 6

lea eax, [ebp+var_1C]

push eax

push [{]

call edi ; RtlComputeCrc32

mov esi, eax ; esi contains the first CRC

push 6

lea eax, [ebp+var_1iC]

push eax

xor ebx, ebx

shld ebx, esi, 8 ; ebx contains 1st CRC shld 8

push 33333333h

shl esi, 8 ; 1st CRC shl 8

call edi ; RtlComputeCrc32

xor edx, edx

Xor eax, esi ; 2nd CRC ~ 1st CRC (shl 8)

Xor edx, ebx ; edx contains the 1st CRC shld 8

mov esi, [ebp+StringBuf] ; esi points to the destination string
mov ecx, eax

and ecx, 1Fh ; val1l & Bx1F (8x1F is the length of the seed string)
mov cl, SeedString[ecx]

inc [ebp+StringBuf]

mov [esi], cl ; put the indexed byte to the destination buffer
mov cl, 5

call _allshr

mov ecx, eax

or ecx, edx

jnz short build domain ; loop the build_domain routine

mov eax, [ebp+StringBuf]

pop edi

pop esi

mov dword ptr [eax], ‘nc.’' ; append the .cn top-level domain

Domain generation algorithm reversed

GetSystemTimeAsFileTime (&TimeFile);
RtlTimeToTimeFields(&TimeFile,&TimeDate);

crcl = RtlComputeCrc32(0,&TimeDate,6);

crc2 = RtlComputeCrc32(@x33333333,&TimeDate,6);

_allshl(&val2,&crcl,8);
vall = crc2 *~ crcl;

while ((vall | val2))

1
FileName[index] = StartingString[(vall & @x1F)];

_allshr(&vall,&val2,5);
index++;

strcat_s(FileName,MAX PATH,".cn");
DGA translated to C code

The command and control server checks the user agent, if matches the one showed below then the server will reply:

User-Agent: Opera/6 (Windows NT %u.%u; U; LanglD=%x; x86) , where the %u and %x are the parameters retrieved from the
infected operating system with a call to the GetVersion() and GetSystemDefaultLangID() Windows APlIs.

10

@

Prevx

% ADVANCED MALWARE RESEARCH TEAM

The routine used by the rootkit to choose the right system driver to infect is not changed since the one described in this paper at
page 3. What changed is the way how the rootkit generates the file name used to store the hidden RC4-encrypted rootkit volume.
While the old routine is described at page 4, the new routine works as follows:

v" The rootkit queries the following registry key: HKLM SYSTEM\Setup\Pid by calling ZwQueryKey with KeyBasiclnformation
parameter;

v" The rootkit then queries the _KEY_BASIC_INFORMATION->LastWriteTime parameter;

v" The rootkit hashes the LastWriteTime parameter, which is described as a LARGE_INTEGER value. It calls MD5Update() API
by hashing the first 8 bytes of the _KEY_BASIC_INFORMATION structure filled by the ZwQueryKey call

v' It retrieves the two first DWORD values of the four DWORD values composing the MD5 hash, these values will be used as
seed values;

v' It uses a starting string from where it gets the “random” characters that will compose the new file name. The string is:
eaoimnqazwsxedcrfvtgbyhnujmikolp;

v" The file name that needs to be composed is 8 characters long, so it starts a loop by doing following steps:

o Seed value is and’d with Ox1F (length of the starting string), the returning value is the index of the character in
the starting string that will be used in the new file name;

o Seed value is right shifted by 5 using a 64 bit right shift functions (shrd/shr);

The loop continues until the eight-characters string is composed — starting from the end till the beginning of it.

RegOpenKeyA(HKEY_LOCAL_MACHINE, "SYSTEM\\Setup\\Pid",®Key);
NtQueryKey(regKey,KeyBasicInformation,&eyInfo,sizeof (KEY_BASIC_INFORMATION),&result);
CloseHandle(regKey);

MdSInit(&1dSInfo);
MdSUpdate (&1dSInfo, (unsigned char*)&KeyInfo,8);
MdS5Final(&4dSInfo);

seed = *(DWORD*) ((DWORD)&1d5Info + @x58);
seed2 = *(DWORD*)((DWORD)&1dS5Info + 8x5C);

while (index >= @)

i
FileName[index] = StartingString[(seed & Ox1F)];
_allshr(&seed,&seed2,5);
if (index == @)
break;
index--;
¥

File name generation routine

The RC4 encryption implemented by the rootkit for its hidden volume is the same described at page 7, even the RC4 encryption key
is still the same.

@ % ADVANCED MALWARE RESEARCH TEAM

ROOTKIT SELF-DEFENSE TRICKS

The ZeroAccess rootkit now implements another kernel mode driver used to defense itself against security software along with its
main driver analyzed in the previous pages. The driver sets up its own device object called \Device\svchost.exe, and it stores a fake
PE executable to the fake path \Device\svchost.exe\svchost.exe. The rootkit self-defense driver attaches itself to the disk device
stack so that it’s able to handle IRP packets filtering the ones direct to its \Device\svchost.exe device object. The driver then sets up
a fake system process, called svchost.exe, pointing its file path to the following one:
\\.\globalroot\Device\svchost.exe\svchost.exe. The rootkit then starts filtering every IRP packet directed to its fake device object.

The self-defense driver monitors every IRP packet, filtering the IRP_MJ_CREATE and IRP_MJ_DIRECTORY_CONTROL packets. If a
software tries to open a handle to the fake svchost.exe or it executes an IRP_MJ_DIRECTORY_CONTROL query on the file — like a
call to ZwQueryDirectoryFile — the rootkit driver kills the calling software.

If a software tries to open a handle to the fake file, the rootkit driver checks some PE settings before killing the calling process that
attempted to open the handle. If the calling process’s PE file has its TimeDateStamp set to 0x4CC3574B and its checksum is set to
OxDEE3, then the rootkit won’t kill the process. Moreover, the rootkit won’t kill the calling process if the PE fields
MajorOperatingSystemVersion and MinorOperatingSystemVersion are equal to the current running operating system. This last
check allows system tools like Windows Task Manager - taskmgr.exe - to work without being killed by the rootkit.

If the rootkit intercept a IRP_MJ_DIRECTORY_CONTROL request, it immediately kills the calling process without any further check.

lea eax, [ebp+MinorVUersion]
push eax ; MinorVUersion
lea eax, [ebp+MajorVersion]
push eax ; MajorVersion
call ds:PsGetVUersion
cmp dword ptr [esi+8], 4CC3574Bh ; PE TimeDateStamp == Bx4CC3574B?
jnz short Check_MajorosS ;
cmp dword ptr [esi+58h], GDEE3h ; PE checksum == BOxDEE3?
jz short set nokill flag
Check_HMajor0S: ; CODE XREF: Check_Process_Flags+76Tj

movzx eax, word ptr [esi+4Bh] ;
; PE MajorOperatingSystemVersion

cmp eax, [ebp+MajorVUersion]
jnz short clear_nokill flag
movzx eax, word ptr [esi+42h] ; PE HMinorOperatingSystemUersion
cmp eax, [ebp+MinorVersion]
jnz short clear_nokill_flag
set_nokill_flag: ; CODE XREF: Check_Process_Flags+7FTj
Xor eax, eax
inc eax

PE file check by the rootkit driver

The killing routine is composed by two main step: the process killing routine and the file killing routine. To kill the process that is
trying to access to the fake file, the rootkit driver allocates inside the target process 165 bytes of memory and injects there its
malicious payload. Then, the code is executed by scheduling an APC. When executed from inside the target process space, the
malicious payload walks the module list, looking for kernel32.dll. Then, it parses the export table and looks for the ExitProcess()
Win32 API. When found, the payload calls the exit process function. By doing so, the rootkit forces the target process from killing
itself, bypassing every kind of security protection eventually implemented by the process.

@ % ADVANCED MALWARE RESEARCH TEAM

Injected_Code:

nov eax, large fs:18h
nov eax, [eax+36h] ;
mov eax, [eax+8Ch] ;
lea ebp, [eax+BCh] ;

nov ebx, ebp

walk_module_list:

; Teb
Teb->ProcessEnvironmentBlock
Peb->Ldr
Peb->Ldr.InLoadOrderModulelList

CODE XREF: .text:80812D471j

mov ebx, [ebx]
cmp ebx, ebp
jz short loc_12D59
mov esi, [ebx+36h]
Xor edi, edi
mov eax, edi
mov ecx, 18083Fh
hash_name: ; CODE XREF: .text:808012D3D}j
or ax, 26h
mouzx eax, ax
add eax, edi
mul ecx
mov edi, eax
lodsw
test ax, ax
jnz short hash_name
cmp edi, 86B11DEEh ; Kernel32.dll hash
jz short Parse Export_Table ; module found
jmp short walk_module_list

Parse_Export_Table:

mov ebx, [ebx+18h]
push BCEDFBDAFh
call ImportFunction
push eax

jmp eax

CODE XREF: .text:808812D45Tj

ExitProcess

jmp to ExitProcess()

killer payload injected by the rootkit

The rootkit doesn’t simply kill the process that tried to analyze the svchost.exe fake process, it will even prevent the software from

being executed again. Thus, after the process has been killed, the rootkit resets the ACL setting of the software executable,

preventing it from being executed again. The file’s ACL is reverted to a customized ACL of the Everyone built-in Windows group.

push
push
lea
push
lea
push
push
lea
push
mov
mov
mov
mnov
mov
mov
call
test
jl
push
push
push
call
push
call

13

edi ; OpenOptions

7 ; Sharefccess

eax, [ebp+IoStatusBlock]

eax ; IoStatusBlock
eax, [ebp+ObjectAttributes]

eax ; Objectattributes
480086h ; DesiredAccess
eax, [ebp+Handle]

eax ; FileHandle

[ebp+ObjectAttributes.Length], 18h
[ebp+ObjectAttributes.0ObjectName], ebx
[ebp+0ObjectAttributes.RootDirectory], edi
[ebp+ObjectAttributes.Attributes], 46h
[ebp+ObjectAttributes.SecurityDescriptor], edi
[ebp+ObjectAttributes.SecurityQuality0fService], edi
ds:ZuwlpenFile ; open handle to the target file
eax, eax

short loc_1119B

offset Custom_SecurityDescriptor ; SecurityDescriptor
4 ;5 DACL_SECURITY_INFORMATION
[ebp+Handle] ; File handle

ds:ZwSetSecurityObject ; fix the DACL configuration
[ebp+Handle] ; Handle

ds:2uClose

ZeroAccess kills the file ACL

C:\>cacls procexp.exe
procexp.exe BUILTIN\Administrators:F
NT AUTHORITY\SYSTEM:F
TESTPC\PCTest:F
BUILTIN\Users:R

C:\>procexp

C:\>cacls procexp.exe

C:\procexp.exe Everyone:{(NP)>{accesso speciale:)
DELETE
READ_CONTROL
WRITE_DAC
WRITE_OUNER
STANDARD_RIGHTS _REQUIRED
FILE_READ_DATA
FILE_UWRITE_DATA
FILE_APPEND_DATA
FILE_READ_EA
FILE_UWRITE_EA
FILE_ERECUTE
FILE_DELETE_CHILD
FILE_READ_ATTRIBUTES
FILE_WRITE_ATTRIBUTES

ACL before and after the fix

@ ADVANCED MALWARE RESEARCH TEAM

CONCLUSIONS

ZeroAccess is definitely one of the most advanced kernel mode rootkits out there. While it isn’t as powerful as TDL rootkit family
yet, it implements a number of unique features that make it quite dangerous and a potential vector of other infections. The way
how it creates and handles the hidden volume allows ZeroAccess to be distributed along with any other kind of infection, storing it
in the rootkit’s encrypted file system and giving it full access to the system.

As already written in the paper, ZeroAccess strongly resembles TDL3 rootkit in many ways: they both implemented the same idea
of storing their code outside the system’s filesystem, both use RC4 encryption, both choose randomly the driver to be infected,
both filter SCSI_REQUEST_BLOCK packets at lower level than disk.sys (though TDL3 hijacks the lowest miniport driver while
ZeroAccess hits disk.sys’s DRO device by hijacking it and redirecting it to its filtering device). The disk filtering engine implemented
by ZeroAccess is not as advanced as the one implemented by TDL3 rootkit, this is the reason why ZeroAccess infection is easier to
be detected and removed than the TDL3 rootkit. Sadly this is a minor problem that could be easily improved by the ZeroAccess
authors, making its creature more complete and powerful than ever, moreover if it’ll be combined with other kind of infections.

If ZeroAccess will evolve in the same way how TDL3 quickly evolved, we’ll probably see a bigger significant number of computers
worldwide hit by this infection.

ABOUT PREVX

Prevx provides cloud-based products with unparalleled capabilities for protecting consumers, SMEs and enterprises,
banks, and government organizations from the latest malware threats.

The entire Prevx suite is underpinned by its award-winning flagship security agent, Prevx 3.0, and connects to the
world's largest cloud-based threat database. Prevx 3.0 is the world's smallest, fastest, and lightest endpoint security
agent yet its detection, protection and removal capabilities rival the largest antivirus solutions. Prevx specializes in
detecting zero day attacks, reducing the time exposed to danger and providing real-time protection against the latest
and the most malicious forms of malware, including keyloggers, Trojans, and rootkits - catching the threats that are
missed by traditional antivirus providers.

Prevx is a division of Internet security service company Webroot. With its main operations in the United Kingdom,
Prevx products are also sold and supported across Europe and in the United States. Before acquisition by Webroot in
2010, Prevx was formed by IT entrepreneur Mel Morris who acquired Immunify Ltd in 2005 and re-launched it as
Prevx. Now vice president and general manager of the Prevx division at Webroot, Morris named Prevx to reflect the
organization's mission to help customers - from consumers and small businesses to the largest financial institutes and
global organizations - to best protect themselves against the evolving and unknown nature of malicious software.
Prevx: preventing the unknown.

Prevx's family of security software is deployed by leading banks, enterprises, and government agencies and supports
over 15 million users worldwide.

g % ADVANCED MALWARE RESEARCH TEAM

