Researchers with the MIT Plasma Science and Fusion Center (PSFC) have recently put a new spin on the well-understood technology behind magnets. While that may sound simplistic at first sight (how much better can a magnet become, after all?), the research unlocks new material applications. Magnets (and electromagnetism itself) being the basis of entire computational systems, improvements to base magnetic materials are expected to bring high-impact improvements to our handling of these fundamental forces.
Taking advantage of quantum effects, the researchers managed to control the anomalous
Hall effect and Berry curvature, two fundamental physics barriers that stood against attempts of being put to work in a way that'd be useful for us. The research team's
new paper, published in Nature, sheds some light on the usage of chromium telluride as a way to take advantage of both effects to both improve efficiency and performance. The impacted areas? Anywhere magnets matter: ranging through computation, electronics, and robotics.
The Hall Effect refers to a discovery made by 23-year-old Edwin Hall, back in 1879. Hall noticed that putting a magnet in a right angle against a vertical strip of metal with a current coursing through it deflected the current against the opposite end of the metal sheet (remember that electrical current is the ordered motion of free electrons).
This asymmetrical difference in current became known as the Hall effect. But with quantum mechanics, this asymmetrical behavior can be used to our advantage. Think of quantum mechanics as a way to look at what the Hall effect is actually doing at a particle-physics level, which, in turn, allows us to understand and affect the circumstances in which in manifests.