New System Could Break Bottleneck in Microprocessors

Terry Ganzi

Level 26
Thread author
Verified
Top Poster
Well-known
Feb 7, 2014
1,540
Intel and other multicore processor makers want cores to be able to communicate with each other faster. More cores (the Haswell-EX Xeon E7-8890 V3 shown here has 18) typically means much more time coordinating communications.


Engineers at North Carolina State University and at Intel have come up with a solution to one of the modern microprocessor’s most persistent problems: communication between the processor’s many cores. Their answer is a dedicated set of logic circuits they call the Queue Management Device, or QMD. In simulations, integrating the QMD with the processor’s on-chip network, at a minimum, doubled core-to-core communication speed, and in some cases, boosted it much farther. Even better, as the number of cores was increased, the speed-up became more pronounced.

In the last decade, microprocessor designers started putting multiple copies of processor cores on a single die as a way to continue the rate of performance improvement computer makers had enjoyed without chip-killing hot spots forming on the CPU. But that solution comes with complications. For one, it meant that software programs had to be written so that work was divided among processor cores. The result: Sometimes different cores would need to work on the same data or have to coordinate the passing of data from one core to another.

You can catch the rest of this news here: New System Could Break Bottleneck in Microprocessors
 

About us

  • MalwareTips is a community-driven platform providing the latest information and resources on malware and cyber threats. Our team of experienced professionals and passionate volunteers work to keep the internet safe and secure. We provide accurate, up-to-date information and strive to build a strong and supportive community dedicated to cybersecurity.

User Menu

Follow us

Follow us on Facebook or Twitter to know first about the latest cybersecurity incidents and malware threats.

Top